

Using artificial intelligence to support the engineering of piping and instrumentation diagrams: modeling & prototyping

J. Oeing¹, W. Welscher², K. Brandt¹, N. Kockmann¹

1. TU Dortmund, Laboratory of Equipment Design, Dortmund/DE 2. X-Visual Technologies GmbH, Berlin/DE

Motivation

- Digitization requires well-structured data^[1]
- Machine-readable engineering data
 - CAEX^[2]
 - AutomationML^[3] ٠
 - DEXPI^[4] ٠
 - ٠ . . .
- Combine machine-readable P&IDs and artificial intelligence (AI) to use stored knowledge

<AutomationML/>

[1] Wiedau et al., Chem.Ing.Tech., 2021 [2] IEC 62424, 2016

[3] automationml.org, 2022 [4] dexpi.org, 2022

Consistency checks in P&IDs

Hypothesis: AI is able to learn patterns in P&IDs and thus can detect anomalies in P&IDs.

Added value through direct involvment in the drawing process of P&IDs

Aim of this talk:

- Using Graph Neural Networks (GNN) to learn from P&IDs
- Support the Engineering of P&IDs (real time consistency checks)
 - Avoid errors
 - Reduce costs
- Understanding machine-readable P&IDs as a broad information model

P&IDs as Graphs

- Abstraction of P&IDs as directed graphs
 - Nodes \rightarrow equipment, components
 - Edges \rightarrow piping, signal lines
 - Direction \rightarrow direction of the process streams

Advantages

- Mathematical topology discription
- Data availability for AI methods
- How do we get the data we need?

Data

- 25 P&IDs (DEXPI)
 - 8x distillation plants
 - 6x absorption desorption plants
 - 11x modular laboratory plants
- Directed graphs (GraphML)
 - 2504 nodes
 - 2842 edges (directed)
- Categories
 - 16 categories
 - Unbalanced distribution

Category	Number	Category	Number	Category	Number
Valves	725	Heat exchanger	82	Vessels	56
Ball valves	74	Separators	30	Pipe Tees	616
Globe valves	36	Temperature sensors	171	Piping elements	67
Check valves	47	Pressure sensors	115	Inlets / Outlets	226
Safety valves	68	Flow sensors	60		
Pumps	60	Other sensors	71		

Data

Modelling – Graph Neural Networks (GNN)

- k-layer GNN's generate embeddings h_u of node u based on their neighborhood structure^[1]
- Message passing in GNNs^[2]

$$h_{u}^{(k+1)} = Update^{(k)} \left(h_{u}^{(k)}, Aggregate^{(k)} \left(\left\{ h_{v}^{(k)}, \forall v \in N(u) \right\} \right) \right)$$

- <u>Aggregation</u>: collects neighborhood information
- <u>Update</u>: introduces a non-linearity into the output of a neuron

Prototyping

Neighborhood aggregation of a P&ID - GNN^[3]

Leskovec, J., Inductive Representation Learning on Large Graphs, 2017
Hamilton, W., Graph Representation Learning, 2020
Oeing, J. et al., Dig. Chem. Eng., 2022

bci Department of Biochemical and Chemical Engineering

Department of Biochemical and Chemical Engineering

Data

Jumping Knowledge Networks (JKN)

<u>GNN:</u>

 nodes features of one layer used for calculation of features of next layer

<u>JKN:</u>

- save features of all layers and use it again at the end
 - concatenation of all hidden feature vectors as input of last layer
 - nodes only receive information from neighbours

Prototyping

4-layer QuappingeKrad Wileolger N (@ANDV)k^[1]

[1] K. Xu et al., 2018

Graph neural Networks (GNN) – Training

- Activation functions
 - ReLU, SeLU, tanh
- Train/Test split
 - 0.7/0.3

--- ReLU tanh SELU

- Python
 - Deep Graph Library (DGL) / pytorch •
- Loss Calculation
 - Optimizer: Adam (learning rate = 0.01)
 - Loss: Cross-entropy ٠

- Aggregation functions
 - Sum
 - Mean
 - Graph Convolution Network (GCN)
 - Max-Pooling
 - Min-Pooling •
 - Multilayer-perceptron (MLP) •

Engineering Software

Accuracy

equipment

design

- Increase of the number of layer results in decrease of the accuracy
- Max-Pooling → high accuracy for all different numbers of layers
- JKN → high accuracy for all different aggregation functions
- Best results: 98 % test accuracy
 - 6-layer JKN
 - Max-pooling
 - tanh

Confusion matrix (6-layer JKN, tanh, max-pooling, 35 hidden neurons)

J. Oeing, W. Welscher | PAAT 2022

Engineering Software

12

Prototyping

- Use AI to support the drawing of P&IDs
 - Use stored knowledge from historical P&ID data
 - Reduce errors
 - Improve the quality of P&IDs
- Implementation of AI models in X-Visual PlantEngineer
 - GNN-based model for consistency checks
 - RNN-based model for prediction of P&ID equipment^[1,2]

[1] J. Oeing et al., Dig. Chem. Eng., 2022 [2] J. Oeing, JT PAAT, 2021

a Modeling Prototyping Conclusion & Outlook

Implementation

- Plant Engineer (X-Visual Technologies)
 - Data Exchange via exchange directory
 - Data Exchange using GraphML / .json
- Docker Container (TU Dortmund AD)
 - Python 3.9
 - GNN (pytorch)
 - Output: Inconsistent nodes/edge
 - RNN (tensorflow)
 - Output: Prediction of suitable equipment

Graphical User Interface

- AI P&ID consistency check
 - Linking errors
 - Inconsistent equipment
- AI P&ID equipment prediction
 - Selection of equipment by the cursor
 - Suggestion of suitable equipment in the surrounding area of the selection

Faster drawing of P&IDs

Conclusion & Outlook

- Reliable conistency checks with GNNs possible
 - High accuracies up to 98 % test accuracy •
 - JKNs are able to check consistency in different depth of the ٠ P&ID
- Prototype for AI supported drawing of P&IDs
 - Real-time consistency checks using GNNs •
 - Real-time prediction of Equipment using RNNs •
- Outlook:
 - Combination of different GNN models to improve perfomance •
 - Retrain models with higher amount of P&ID data •

Thank you for your attention

🛛 🖕 🖕 www.keen-plattform.de 🖝 🗨

Acknowledgments

Bundesministerium für Wirtschaft und Klimaschutz

🏿 🜒 🖕 www.tu-dortmund.de 🔍 🔍

