

Using artificial intelligence to support the engineering of piping and instrumentation diagrams: modeling & prototyping

J. Oeing¹, W. Welscher², K. Brandt¹, N. Kockmann¹

TU Dortmund, Laboratory of Equipment Design, Dortmund/DE
 X-Visual Technologies GmbH, Berlin/DE

Overview Prototype - P&ID consistency check Data preprocessing Implementation of GNNs in P&ID software Why using graph data? How to interact with a GNN in P&ID How to represent P&ID as software? graph? **Conclusion & Motivation** Data Modeling **Prototyping Outlook Graph Learning Conclusion & Outlook** Machine-readable plant topology data What is a Graph Neural Network? Overview - GNN Potential How to do consistency checks on consistency checks Accessability graph based P&IDs using GNNs? Next steps / Extensions **Availability**

dortmund

- Digitization requires well-structured data^[1]
- Machine-readable engineering data

technische universität

- CAEX^[2]
- AutomationML^[3]
- DEXPI^[4]
- Combine machine-readable P&IDs and artificial intelligence (AI) to use stored knowledge

CAEX

[3] automationml.org, 2022 [4] dexpi.org, 2022

Hypothesis: AI is able to learn patterns in P&IDs and thus can detect anomalies in P&IDs.

Added value through direct involvment in the drawing process of P&IDs

Aim of this talk:

- Using Graph Neural Networks (GNN) to learn from P&IDs
- Support the Engineering of P&IDs (real time consistency checks)
 - Avoid errors
 - Reduce costs
- Understanding machine-readable P&IDs as a broad information model

P&IDs as Graphs

- Abstraction of P&IDs as directed graphs
 - Nodes → equipment, components
 - Edges → piping, signal lines
 - Direction → direction of the process streams
- Advantages
 - Mathematical topology discription
 - Data availability for AI methods
- How do we get the data we need?

Data

- 25 P&IDs (DEXPI)
 - 8x distillation plants
 - 6x absorption desorption plants
 - 11x modular laboratory plants
- Directed graphs (GraphML)
 - 2504 nodes
 - 2842 edges (directed)
- Categories
 - 16 categories
 - Unbalanced distribution

Category	Number	Category	Number	Category	Number
Valves	725	Heat exchanger	82	Vessels	56
Ball valves	74	Separators	30	Pipe Tees	616
Globe valves	36	Temperature sensors	171	Piping elements	67
Check valves	47	Pressure sensors	115	Inlets / Outlets	226
Safety valves	68	Flow sensors	60		
Pumps	60	Other sensors	71		

Modelling – Graph Neural Networks (GNN)

Motivation

Data

- k-layer GNN's generate embeddings h, of node u based on their neighborhood structure^[1]
- Message passing in GNNs^[2]

$$h_{u}^{(k+1)} = Update^{(k)}\left(h_{u}^{(k)}, Aggregate^{(k)}\left(\left\{h_{v}^{(k)}, \forall v \in N(u)\right\}\right)\right)$$

- Aggregation: collects neighborhood information
- Update: introduces a non-linearity into the output of a neuron

Neighborhood aggregation of a P&ID - GNN^[3]

[3] Oeing, J. et al., Dig. Chem. Eng., 2022

^[1] Leskovec, J., Inductive Representation Learning on Large Graphs, 2017

^[2] Hamilton, W., Graph Representation Learning, 2020

Challenges – Graph Neural Networks (GNN)

2-layers:

- Aggregation of information two steps away
 - No modelling of larger context

Multiple-layers:

- Aggregation gets to many information
 - Features of different nodes very similar ("Oversmoothing")
- Jumping Knowledge Networks (JKN)

2 layer

3 layer

4 layer

Jumping Knowledge Networks (JKN)

GNN:

 nodes features of one layer used for calculation of features of next layer

JKN:

- save features of all layers and use it again at the end
 - concatenation of all hidden feature vectors as input of last layer
 - nodes only receive information from neighbours

4-layer Guantin Nekrad Wiledoger N & CANOT k [1]

[1] K. Xu et al., 2018

Graph neural Networks (GNN) – Training

- Activation functions
 - ReLU, SeLU, tanh
- Train/Test split
 - 0.7/0.3

- Python
 - Deep Graph Library (DGL) / pytorch
- Loss Calculation
 - Optimizer: Adam (learning rate = 0.01)
 - Loss: Cross-entropy

- Aggregation functions
 - Sum

Data

- Mean
- Graph Convolution Network (GCN)
- Max-Pooling
- Min-Pooling
- Multilayer-perceptron (MLP)
- Accuracy

$$A = \frac{TP + TN}{TP + TN + FP + FN}$$

Results

<u>ReLU</u>

<u>SeLU</u>

Data

<u>tanh</u>

2 layer
3 layer
4 layer
5 layer
6 layer
4 JKN
6 JKN

Outlook

Data

Results

- Increase of the number of layer results in decrease of the accuracy
- Max-Pooling → high accuracy for all different numbers of layers
- **JKN** → high accuracy for all different aggregation functions
- Best results: 98 % test accuracy
 - 6-layer JKN
 - Max-pooling
 - tanh

Confusion matrix (6-layer JKN, tanh, max-pooling, 35 hidden neurons)

dortmund

- Use AI to support the drawing of P&IDs
 - Use stored knowledge from historical P&ID data
 - Reduce errors
 - Improve the quality of P&IDs

technische universität

- Implementation of AI models in X-Visual PlantEngineer
 - GNN-based model for consistency checks
 - RNN-based model for prediction of P&ID equipment^[1,2]

Consistency checks

Equipment prediction

Artificial Ingelligence

[1] J. Oeing et al., Dig. Chem. Eng., 2022 [2] J. Oeing, JT PAAT, 2021

Implementation

- **Plant Engineer** (X-Visual Technologies)
 - Data Exchange via exchange directory
 - Data Exchange using GraphML / .json
- **Docker Container** (TU Dortmund AD)
 - Python 3.9
 - **GNN** (pytorch)
 - Output: Inconsistent nodes/edge
 - RNN (tensorflow)
 - Output: Prediction of suitable equipment

Motivation

Graphical User Interface

- AI P&ID consistency check
 - Linking errors
 - Inconsistent equipment
- AI P&ID equipment prediction
 - Selection of equipment by the cursor
 - Suggestion of suitable equipment in the surrounding area of the selection
- Faster drawing of P&IDs

Motivation

Conclusion & Outlook

- Reliable conistency checks with GNNs possible
 - High accuracies up to 98 % test accuracy
 - JKNs are able to check consistency in different depth of the P&ID

- Prototype for AI supported drawing of P&IDs
 - Real-time consistency checks using GNNs
 - Real-time prediction of Equipment using RNNs

- Outlook:
 - Combination of different GNN models to improve perforance
 - Retrain models with higher amount of P&ID data

Thank you for your attention

www.keen-plattform.de

Acknowledgments

www.tu-dortmund.de • • •

